Get students involved

Help students explore their interests by encouraging participation in computing competitions, scholarships and events.

people using computers in a classroom

Computing student opportunities

Submit lesson plans

Share your suggestions for future pre-university lesson plan topics to support the teaching and learning of computing.

Submit your lesson plan ideas

Lesson plans

Explore's collection of interactive pre-university computing lessons below.

Graphics: Calculating Color

paint bottlesIn a digital world we take color for granted. Through off-computer activities, students learn the difference between additive and subtractive color, and how images are generated on screen and transferred to physical print.

View lesson

Graphics: Bits and Points

pixel vanComputer graphics dominates young people’s lives. Their worldview is heavily influenced by pixels. This lesson uses age appropriate experiences to explain the difference between bitmap (raster) and vector graphics. The lesson covers how information is lost when it is digitized, and how computer graphics techniques can both enhance images, and provide vehicles for corrupting them. It also introduces some ideas on how to efficiently schedule a task.

View lesson

Fibonacci via Recursion and Iteration

shellThis lesson introduces how to calculate an arithmetic series, specifically Fibonacci. In the first of two hour-long sessions, using a spreadsheet (e.g. Microsoft Excel or Google Drive Sheets), students are shown how to calculate a series based on two prior values (the iterative solution), and by using a user-defined function (the recursive solution). With a large enough domain, most computers will exhibit real delays in calculating the recursion for values greater than 30. In the second session, they will explore why the iterative solution is faster, and why the recursive solution significantly slows down for large values. This lesson assumes that the teacher is well versed in using spreadsheets, including copy-down formulas.

View lesson

Encryption – All About Code

lock on tabletStudents learn how alphanumeric symbols can be encoded for a multitude of fun purposes. In the first of two sessions (each 2 hours long) they learn about codes, and are asked to make their own with a limited number of symbols. In the second session they are asked to break each other’s codes and discover the relationship among encryption, decryption, and shared keys.

View lesson

Concurrency Means Cooperation

chopsticksThis lesson provides a number of kinesthetic exercises that illustrate how teamwork can contribute to efficient problem solutions. The lesson includes practice in figuring out how to divide up a problem, and reassemble it. Students also explore how scientists use the Internet and idle computing power to do calculations on volunteer machines. If possible, with sufficient teacher expertise, students set up a computer to contribute to solving such a problem.

View lesson

Circuits and Boolean Expressions

strawsBoolean logic is essential to understanding computer architecture. It is also useful in program construction and Artificial Intelligence. This lesson is a gentle introduction to formal logic using Boolean notation, and Circuits. Students learn the basic rules by playing the role of logic gates in a half adder and full adder. Free logic gate construction software available online can be incorporated optionally.

View lesson

Boolean Algebra is Elementary

pixel vanSherlock Holmes delighted in saying ‘It’s elementary, my dear Watson’. This lesson provides a brief overview of how Boolean algebra provides the basis for artificial intelligence reasoning. The rules of propositional logic are introduced in the context of the kind of ‘AI’ found in role-playing games both on the computer and off.

View lesson

AI Search: Lions and Gazelles

lionThis is an introduction to Artificial Intelligence (AI) ‘state-space search.’ The entertaining story line provides necessary background justifying the classic rules. Students will write and perform a skit that solves the problem using pre-made paper props, as they explore the concept of state representation. This is followed by an informal analysis of state-space, state representations, depth- and breadth-first search, and shortest path.

View lesson

"Program Your Own Game" Lesson

game programming software screenshotThe "Program Your Own Game" activity explores the work of software engineers and allows student teams to develop their own computer game using free and simple software. Teams present their game to their class, evaluate other games, and reflect on the engineering experience.

View lesson

"Arduino Blink Challenge" Lesson

hands working on arduino boardThe "Arduino Blink Challenge" lesson explores how computer and software engineers work to solve the challenges of a society, such as providing systems for turning lights on and off automatically. Students work in teams to set up and program an Arduino board to turn a light on and off at a 5 second on and 2 second off interval. Teams build their system, program and test it, reflect on the challenge, and present their experiences to their class.

View lesson


Turing machine
Alan Mathison Turing
Alan Mathison Turing

Did you know that computing has been used in military espionage and has even influenced the outcome of major wars? Alan Mathison Turing designed the code breaking machine that enabled the deciphering of German communications during WWII. As per the words of Winston Churchill, this would remain the single largest contribution to victory. In addition, he laid the groundwork for visionary fields such as automatic computing engines, artificial intelligence and morphogenesis. Despite his influential work in the field of computing, Turing experienced extreme prejudice during his lifetime regarding his sexual orientation. There is no doubt that computers are ubiquitously part of our lives due to the infusion of Turing’s contributions.

Gordon and SenseCam QUT
Gordon Bell
Gordon and SenseCam QUT

Gordon Bell is a pioneering computer designer with an influential career in industry, academia and government. He graduated from MIT with a degree in electrical engineering. From 1960, at Digital Equipment Corporation (DEC), he designed the first mini- and time-sharing computers and was responsible for DEC's VAX as Vice President of R&D, with a 6 year sabbatical at Carnegie Mellon University. In 1987, as NSF’s first, Ass't Director for Computing (CISE), he led the National Research Network panel that became the Internet. Bell maintains three interests: computing, lifelogging, and startup companies—advising over 100 companies. He is a Fellow of the, Association of Computing Machinery, Institute of Electrical and Electronic Engineers, and four academies. He received The 1991 National Medal of Technology. He is a founding trustee of the Computer History Museum, Mountain View, CA. and is an Researcher Emeritus at Microsoft. His 3 word descriptor: Computing my life; computing, my life.

Sandra Lerner

It is difficult to imagine a time when computers were not capable of sharing information and resources with great ease. Sandra Lerner pushed the boundaries of network computing as one of the co-founders of Cisco Systems, which introduced one of the first commercially viable routers. The router was born while Sandra was working at Stanford University in the 1980’s after earning her Master’s degree there in Computer Science. To avoid the tedious task of transferring information between computers using floppy disks, she and co-founder of Cisco, Leonard Bosack, created a local area network, or LAN, between their campus offices using a multiprotocol router that Bosack developed. Shortly thereafter the pair started Cisco Systems, and began selling the router which was a success, because it could work with so many different types of computers. After Leaving Cisco in 1990, Lerner started the trendy cosmetics company Urban Decay and became a philanthropist and avid activist for animal rights.

MATLAB graph
Cleve Moler

Cleve Moler improved the quality and accessibility of mathematical software and created a highly respected software system called MATLAB. He was a professor of mathematics and computer science for almost 20 years at the University of Michigan, Stanford University, and the University of New Mexico. In the late 1970’s to early 1980’s he developed several mathematical software packages to support computational science and engineering. These packages eventually formed the basis of MATLAB, a programming environment for algorithm development, data analysis, visualization, and numerical computation. MATLAB can be used to solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran. Today, Professor Moler spends his time writing books, articles, and MATLAB programs.

Listen to what Professor Moler has to say about his life’s work:

CGA palette
Mark Dean

If you have ever used a PC with a color display you have been acquainted with the work of Mark Dean. After achieving a Bachelor’s degree in electrical engineering from the University of Tennessee, Dean began his career at IBM. Dean served as the chief engineer on the team that developed the first IBM PC, for which he currently holds one third of the patents. With colleague Dennis Moeller, he developed the Industry Standard Architecture (ISA) systems bus, which enabled peripheral devices such as printers, keyboards, and modems to be directly connected to computers, making them both affordable and practical. He also developed the Color Graphics Adapter which allowed for color display on the PC. Most recently, Dean spearheaded the team that developed the one-gigahertz processor chip. Dean went on to obtain a MSEE from Florida Atlantic University and a Ph.D. in electrical engineering from Stanford University. He is a member of the National Academy of Engineering, has been inducted into the National Inventors Hall of Fame, and is the first African-American IBM Fellow.

Image credits