Inspire

Get students involved

Help students explore their interests by encouraging participation in computing competitions, scholarships and events.

people using computers in a classroom

Computing student opportunities

Lesson plans

Explore TryComputing.org's collection of interactive pre-university computing lessons below.

"Computing in the Cloud…" Lesson

hands working on arduino boardThis lesson starts with an early history of cloud computing, describing its early forms, and how it has been transformed to its present state. This lesson provides guidelines for students to use some cloud facilities such as CloudMe, a file sharing utility, and also teaches them how to install multiple guest OS in a host OS to introduce virtualization i.e. the key concept behind cloud computing.

View lesson

"Fun with Sorting" Lesson

jumbled number magnetsFun with Sorting introduces pre-university students to sorting, one of the most basic and fundamental problems in Computer Science. Students are first introduced to smaller versions of the problem, which form the building blocks of the algorithms they themselves develop later. The problem is given the form of instructor-moderated in-class demonstrations and discussions, followed by group exercises and inter-group competitions.

View lesson

"Solving a Simple Maze" Lesson

mazeThe activity involves the design of an algorithm for solving a 4x4 simple maze. The problem statement is just to design an algorithm and implement them using flow chart. If the background of students permits the use of basic programming, implementing the algorithm in a preferred programming language is recommended.

View lesson

"Search Engines" Lesson

lens magnifying the word engineThe “Search engines” lesson explores the technology that makes a search engine possible, and takes a look at its variations. Students work in teams to build their own search queries. Students study how different search engine algorithms work.

View lesson

"Solving Problems with Decision Trees" Lesson

lens magnifying fingerprint on keyboardThis lesson activity explores how simple computing concepts/algorithms have contributed to solving real life problems. Students will also learn solving problems with decision trees. Students will have the opportunity to work in teams to explore an example of how the decision tree can be used for detecting subscription fraud.

View lesson

"Complexity – It's Simple" Lesson

lily pads and flowers on pondThe Complexity lesson allows students learn about complexity through illustrative games, teamwork activities and design tasks. Students will gain an intuitive understanding of different growth rates and how they determine the performance of algorithms such as sorting. Advanced students can also develop skills in analyzing the complexity of algorithms.

View lesson

"Give Binary a Try!" Lesson

binary clockThe "Give Binary a Try!" lesson explores how binary codes work, how it is applied by computer engineers to computers and other electronic equipment including clocks. Students learn how to use the code, read binary clocks, and advanced students can build their own binary clock from a kit.

View lesson

"Choose Your Best Way" Lesson

pushpin on mapThe “Choose Your Best Way” lesson explores how to build a mathematic model that helps solve real problems and how to realize algorithmic thinking in computers. Students work in teams to build a graph model of their city map. Students then try to solve a real problem based on the model, evaluate their solutions, and present their reflections to the class.

View lesson

Pages

Cursor
James Dammann

If you have used a word processor today, moved your mouse on your laptop, dragged an object around on your smartphone, or highlighted a section of text on your tablet, you can thank Jim Dammann. In 1961 during his second year at IBM and just one year after completing his PhD, Jim created the concept of what today we all take for granted -- the cursor. This idea he documented in utilizing the cursor within word processing operations.

After retiring from IBM, Jim went on to inspire future generations of software engineers at Florida Atlantic University. His work there too demonstrated his creativity for he spent considerable effort enhancing their software engineering program by integrating ideas and feedback from local industries into the University curricular. Today, Jim lives in the Westlake Hills west of Austin Texas and spends most of his time in his art studio. He wrote and published The Opaque Decanter, a collection of poems about art, which provided a new view at part of art history.

Turing machine
Alan Mathison Turing
Alan Mathison Turing

Did you know that computing has been used in military espionage and has even influenced the outcome of major wars? Alan Mathison Turing designed the code breaking machine that enabled the deciphering of German communications during WWII. As per the words of Winston Churchill, this would remain the single largest contribution to victory. In addition, he laid the groundwork for visionary fields such as automatic computing engines, artificial intelligence and morphogenesis. Despite his influential work in the field of computing, Turing experienced extreme prejudice during his lifetime regarding his sexual orientation. There is no doubt that computers are ubiquitously part of our lives due to the infusion of Turing’s contributions.

RISC processor
John Hennessy
John Hennessy

Have you ever wondered how computers can execute complex commands in mere seconds? John Hennessy is a pioneer of reduced instruction set computing (RISC) architecture which employs small, highly-optimized sets of instructions to greatly enhance computer performance. He was instrumental in transferring the technology, specifically MIPS RISC architecture, to industry. He co-founded MIPS Technologies and co-authored the classic textbook with David A. Patterson, on Computer Architecture.

As Stanford faculty he rose to be the Chairman of the Computer Science Department, Dean of the School of Engineering, then Provost and finally the President of Stanford in 2000 (and till date). Hennessy holds a Master’s and Ph.D. in Computer Science from SUNY Stony Brook. He is an IEEE Fellow and was selected to receive the IEEE Medal of Honor in 2012. Hennessey also launched significant activities that helped to foster interdisciplinary research in the biosciences and bioengineering at Stanford.

Bletchley Park
Dr. Sue Black
Dr. Sue Black

Dr. Sue Black has demonstrated the power of social networking. She used Web 2.0 technologies to help raise awareness of, and critical funding for, Bletchley Park, the UK World War II center for decrypting enemy messages. She has also been an active campaigner for equality and support for women in technology fields, founding a number of online networking platforms for women technology professionals. A keen researcher, Dr. Black completed a PhD in software measurement in 2001. Her research interests focus on software quality improvements. She has recently won the PepsiCo Women's Inspiration Network award, been named Tech Hero by ITPRO magazine and was awarded the first John Ivinson Award from the British Computer Society. In 2011 Dr. Black set up The goto Foundation, a nonprofit organization which aims to make computer science more meaningful to the public, generate public excitement in the creation of software, and build a tech savvy workforce. Read Sue's blog about The goto Foundation: http://gotofdn.org

@ symbol
Ray Tomlinson
Ray Tomlinson

Have you ever considered that someone, at some point, was in a position to choose what symbol would be used separate the user from their location in an email address? That person, it turns out, was Ray Tomlinson, and in 1971 he chose "@". Tomlinson is credited with demonstrating the first email sent between computers on a network, and when asked what inspired him to make this selection he said, “Mostly because it seemed like a neat idea.”

After completing his Master’s degree at MIT in 1965, Ray joined the Information Sciences Division of Bolt Beranek and Newman Inc. of Cambridge, Massachusetts. Since then he has made many notable contributions to the world of network computing. He was a co-developer of the TENEX computer system that was popular in the earliest days of the Internet; he developed the packet radio protocols used in the earliest internetworking experiments; he created the first implementation of TCP; and he was the principle designer of the first workstation attached to the Internet.

Image credits