Inspire

Get students involved

Help students explore their interests by encouraging participation in computing competitions, scholarships and events.

people using computers in a classroom

Computing student opportunities

Lesson plans

Explore TryComputing.org's collection of interactive pre-university computing lessons below.

"Computing in the Cloud…" Lesson

hands working on arduino boardThis lesson starts with an early history of cloud computing, describing its early forms, and how it has been transformed to its present state. This lesson provides guidelines for students to use some cloud facilities such as CloudMe, a file sharing utility, and also teaches them how to install multiple guest OS in a host OS to introduce virtualization i.e. the key concept behind cloud computing.

View lesson

"Fun with Sorting" Lesson

jumbled number magnetsFun with Sorting introduces pre-university students to sorting, one of the most basic and fundamental problems in Computer Science. Students are first introduced to smaller versions of the problem, which form the building blocks of the algorithms they themselves develop later. The problem is given the form of instructor-moderated in-class demonstrations and discussions, followed by group exercises and inter-group competitions.

View lesson

"Solving a Simple Maze" Lesson

mazeThe activity involves the design of an algorithm for solving a 4x4 simple maze. The problem statement is just to design an algorithm and implement them using flow chart. If the background of students permits the use of basic programming, implementing the algorithm in a preferred programming language is recommended.

View lesson

"Search Engines" Lesson

lens magnifying the word engineThe “Search engines” lesson explores the technology that makes a search engine possible, and takes a look at its variations. Students work in teams to build their own search queries. Students study how different search engine algorithms work.

View lesson

"Solving Problems with Decision Trees" Lesson

lens magnifying fingerprint on keyboardThis lesson activity explores how simple computing concepts/algorithms have contributed to solving real life problems. Students will also learn solving problems with decision trees. Students will have the opportunity to work in teams to explore an example of how the decision tree can be used for detecting subscription fraud.

View lesson

"Complexity – It's Simple" Lesson

lily pads and flowers on pondThe Complexity lesson allows students learn about complexity through illustrative games, teamwork activities and design tasks. Students will gain an intuitive understanding of different growth rates and how they determine the performance of algorithms such as sorting. Advanced students can also develop skills in analyzing the complexity of algorithms.

View lesson

"Give Binary a Try!" Lesson

binary clockThe "Give Binary a Try!" lesson explores how binary codes work, how it is applied by computer engineers to computers and other electronic equipment including clocks. Students learn how to use the code, read binary clocks, and advanced students can build their own binary clock from a kit.

View lesson

"Choose Your Best Way" Lesson

pushpin on mapThe “Choose Your Best Way” lesson explores how to build a mathematic model that helps solve real problems and how to realize algorithmic thinking in computers. Students work in teams to build a graph model of their city map. Students then try to solve a real problem based on the model, evaluate their solutions, and present their reflections to the class.

View lesson

Pages

First computer mouse
Douglas Engelbart
Douglas Engelbart

In 1967, Douglas Engelbart applied for a patent for an "X-Y position indicator for a display system," which he and his team developed at the Stanford Research Institute (SRI) in Menlo Park, California. The device, a small, wooden box with two metal wheels, was nicknamed a "mouse" because a cable trailing out of the one end resembled a tail.

In addition to the first computer mouse, Engelbart’s team developed computer interface concepts that led to the GUI interface, and were integral to the development of ARPANET--the precursor to today’s Internet. Engelbart received his bachelor’s degree in electrical engineering from Oregon State University in 1948, followed by an MS in 1953 and a Ph.D. in 1955 both from the University of California, Berkeley.

Cursor
James Dammann

If you have used a word processor today, moved your mouse on your laptop, dragged an object around on your smartphone, or highlighted a section of text on your tablet, you can thank Jim Dammann. In 1961 during his second year at IBM and just one year after completing his PhD, Jim created the concept of what today we all take for granted -- the cursor. This idea he documented in utilizing the cursor within word processing operations.

After retiring from IBM, Jim went on to inspire future generations of software engineers at Florida Atlantic University. His work there too demonstrated his creativity for he spent considerable effort enhancing their software engineering program by integrating ideas and feedback from local industries into the University curricular. Today, Jim lives in the Westlake Hills west of Austin Texas and spends most of his time in his art studio. He wrote and published The Opaque Decanter, a collection of poems about art, which provided a new view at part of art history.

MATLAB graph
Cleve Moler

Cleve Moler improved the quality and accessibility of mathematical software and created a highly respected software system called MATLAB. He was a professor of mathematics and computer science for almost 20 years at the University of Michigan, Stanford University, and the University of New Mexico. In the late 1970’s to early 1980’s he developed several mathematical software packages to support computational science and engineering. These packages eventually formed the basis of MATLAB, a programming environment for algorithm development, data analysis, visualization, and numerical computation. MATLAB can be used to solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran. Today, Professor Moler spends his time writing books, articles, and MATLAB programs.

Listen to what Professor Moler has to say about his life’s work: http://www.youtube.com/watch?v=IT5umwNSAxE

Router
Sandra Lerner

It is difficult to imagine a time when computers were not capable of sharing information and resources with great ease. Sandra Lerner pushed the boundaries of network computing as one of the co-founders of Cisco Systems, which introduced one of the first commercially viable routers. The router was born while Sandra was working at Stanford University in the 1980’s after earning her Master’s degree there in Computer Science. To avoid the tedious task of transferring information between computers using floppy disks, she and co-founder of Cisco, Leonard Bosack, created a local area network, or LAN, between their campus offices using a multiprotocol router that Bosack developed. Shortly thereafter the pair started Cisco Systems, and began selling the router which was a success, because it could work with so many different types of computers. After Leaving Cisco in 1990, Lerner started the trendy cosmetics company Urban Decay and became a philanthropist and avid activist for animal rights.

Gordon and SenseCam QUT
Gordon Bell
Gordon and SenseCam QUT

Gordon Bell is a pioneering computer designer with an influential career in industry, academia and government. He graduated from MIT with a degree in electrical engineering. From 1960, at Digital Equipment Corporation (DEC), he designed the first mini- and time-sharing computers and was responsible for DEC's VAX as Vice President of R&D, with a 6 year sabbatical at Carnegie Mellon University. In 1987, as NSF’s first, Ass't Director for Computing (CISE), he led the National Research Network panel that became the Internet. Bell maintains three interests: computing, lifelogging, and startup companies—advising over 100 companies. He is a Fellow of the, Association of Computing Machinery, Institute of Electrical and Electronic Engineers, and four academies. He received The 1991 National Medal of Technology. He is a founding trustee of the Computer History Museum, Mountain View, CA. and is an Researcher Emeritus at Microsoft. His 3 word descriptor: Computing my life; computing, my life.

Image credits