Inspire

Get students involved

Help students explore their interests by encouraging participation in computing competitions, scholarships and events.

people using computers in a classroom

Computing student opportunities

Lesson plans

Explore TryComputing.org's collection of interactive pre-university computing lessons below.

"Computing in the Cloud…" Lesson

hands working on arduino boardThis lesson starts with an early history of cloud computing, describing its early forms, and how it has been transformed to its present state. This lesson provides guidelines for students to use some cloud facilities such as CloudMe, a file sharing utility, and also teaches them how to install multiple guest OS in a host OS to introduce virtualization i.e. the key concept behind cloud computing.

View lesson

"Fun with Sorting" Lesson

jumbled number magnetsFun with Sorting introduces pre-university students to sorting, one of the most basic and fundamental problems in Computer Science. Students are first introduced to smaller versions of the problem, which form the building blocks of the algorithms they themselves develop later. The problem is given the form of instructor-moderated in-class demonstrations and discussions, followed by group exercises and inter-group competitions.

View lesson

"Solving a Simple Maze" Lesson

mazeThe activity involves the design of an algorithm for solving a 4x4 simple maze. The problem statement is just to design an algorithm and implement them using flow chart. If the background of students permits the use of basic programming, implementing the algorithm in a preferred programming language is recommended.

View lesson

"Search Engines" Lesson

lens magnifying the word engineThe “Search engines” lesson explores the technology that makes a search engine possible, and takes a look at its variations. Students work in teams to build their own search queries. Students study how different search engine algorithms work.

View lesson

"Solving Problems with Decision Trees" Lesson

lens magnifying fingerprint on keyboardThis lesson activity explores how simple computing concepts/algorithms have contributed to solving real life problems. Students will also learn solving problems with decision trees. Students will have the opportunity to work in teams to explore an example of how the decision tree can be used for detecting subscription fraud.

View lesson

"Complexity – It's Simple" Lesson

lily pads and flowers on pondThe Complexity lesson allows students learn about complexity through illustrative games, teamwork activities and design tasks. Students will gain an intuitive understanding of different growth rates and how they determine the performance of algorithms such as sorting. Advanced students can also develop skills in analyzing the complexity of algorithms.

View lesson

"Give Binary a Try!" Lesson

binary clockThe "Give Binary a Try!" lesson explores how binary codes work, how it is applied by computer engineers to computers and other electronic equipment including clocks. Students learn how to use the code, read binary clocks, and advanced students can build their own binary clock from a kit.

View lesson

"Choose Your Best Way" Lesson

pushpin on mapThe “Choose Your Best Way” lesson explores how to build a mathematic model that helps solve real problems and how to realize algorithmic thinking in computers. Students work in teams to build a graph model of their city map. Students then try to solve a real problem based on the model, evaluate their solutions, and present their reflections to the class.

View lesson

Pages

Turing machine
Alan Mathison Turing
Alan Mathison Turing

Did you know that computing has been used in military espionage and has even influenced the outcome of major wars? Alan Mathison Turing designed the code breaking machine that enabled the deciphering of German communications during WWII. As per the words of Winston Churchill, this would remain the single largest contribution to victory. In addition, he laid the groundwork for visionary fields such as automatic computing engines, artificial intelligence and morphogenesis. Despite his influential work in the field of computing, Turing experienced extreme prejudice during his lifetime regarding his sexual orientation. There is no doubt that computers are ubiquitously part of our lives due to the infusion of Turing’s contributions.

Router
Sandra Lerner

It is difficult to imagine a time when computers were not capable of sharing information and resources with great ease. Sandra Lerner pushed the boundaries of network computing as one of the co-founders of Cisco Systems, which introduced one of the first commercially viable routers. The router was born while Sandra was working at Stanford University in the 1980’s after earning her Master’s degree there in Computer Science. To avoid the tedious task of transferring information between computers using floppy disks, she and co-founder of Cisco, Leonard Bosack, created a local area network, or LAN, between their campus offices using a multiprotocol router that Bosack developed. Shortly thereafter the pair started Cisco Systems, and began selling the router which was a success, because it could work with so many different types of computers. After Leaving Cisco in 1990, Lerner started the trendy cosmetics company Urban Decay and became a philanthropist and avid activist for animal rights.

First computer mouse
Douglas Engelbart
Douglas Engelbart

In 1967, Douglas Engelbart applied for a patent for an "X-Y position indicator for a display system," which he and his team developed at the Stanford Research Institute (SRI) in Menlo Park, California. The device, a small, wooden box with two metal wheels, was nicknamed a "mouse" because a cable trailing out of the one end resembled a tail.

In addition to the first computer mouse, Engelbart’s team developed computer interface concepts that led to the GUI interface, and were integral to the development of ARPANET--the precursor to today’s Internet. Engelbart received his bachelor’s degree in electrical engineering from Oregon State University in 1948, followed by an MS in 1953 and a Ph.D. in 1955 both from the University of California, Berkeley.

CGA palette
Mark Dean

If you have ever used a PC with a color display you have been acquainted with the work of Mark Dean. After achieving a Bachelor’s degree in electrical engineering from the University of Tennessee, Dean began his career at IBM. Dean served as the chief engineer on the team that developed the first IBM PC, for which he currently holds one third of the patents. With colleague Dennis Moeller, he developed the Industry Standard Architecture (ISA) systems bus, which enabled peripheral devices such as printers, keyboards, and modems to be directly connected to computers, making them both affordable and practical. He also developed the Color Graphics Adapter which allowed for color display on the PC. Most recently, Dean spearheaded the team that developed the one-gigahertz processor chip. Dean went on to obtain a MSEE from Florida Atlantic University and a Ph.D. in electrical engineering from Stanford University. He is a member of the National Academy of Engineering, has been inducted into the National Inventors Hall of Fame, and is the first African-American IBM Fellow.

Punch card from a COBOL program
Jean Sammet

Jean E. Sammet was one of the first developers and researchers in programming languages. During the 1950’s - 1960’s she supervised the first scientific programming group for Sperry Gyroscope Co. and served as a key member of the original COBOL (COmmon Business-Oriented Language) committee at Sylvania Electric Products. She also taught one of the first graduate programming courses in the country at Adelphi College. After joining IBM in 1961, she developed and directed the first FORMAC (FORmula MAnipulation Compiler). This was the first widely used general language and system for manipulating nonnumeric algebraic expressions. In 1979 she began handling Ada activities for IBM’s Federal Systems Division. Ada is a structured, object-oriented high-level computer programming language, designed for large, long-lived applications, where reliability and efficiency are paramount. Jean has a B.A. from Mount Holyoke College and an M.A. from the University of Illinois, both in Mathematics. She received an honorary D.Sc. from Mount Holyoke (1978).

Image credits