Vector Graphics Use Functions

0 Review(s)
617 Download(s)
Rate & Review

Lesson synopsis

yoga logoFor a half century computing technology has played an increasing role in how we create visual imagery. Vector graphics was the original method for rendering images on a display screen. It fell out of favor in the 1990s as increasing memory size allowed raster, or bitmap images, to be stored. Within the last decade there has been a resurgence of vector graphics to efficiently support graphic displays as large as billboards and as small as postage stamps. Vector graphics are dependent upon functions. This lesson introduces vector graphics and functions through a collaborative design activity.

Age Levels

14 - 18 years

Objectives

Introduce students to:
how vector graphics technology works, and contrasts with raster graphics.
how smooth scaling occurs.
the role that functions play in vector graphics.
how modern mapping software is implemented as vector graphics.

Anticipated learner outcomes

Students will:
describe the difference between vector and raster graphics.
create a vector image by hand and write the related functions.
draw an personal logo using a set of functions.
explain how mapping software is more flexible with vector graphics.

Rate this lesson plan

Add new review

Turing machine
Alan Mathison Turing
Alan Mathison Turing

Did you know that computing has been used in military espionage and has even influenced the outcome of major wars? Alan Mathison Turing designed the code breaking machine that enabled the deciphering of German communications during WWII. As per the words of Winston Churchill, this would remain the single largest contribution to victory. In addition, he laid the groundwork for visionary fields such as automatic computing engines, artificial intelligence and morphogenesis. Despite his influential work in the field of computing, Turing experienced extreme prejudice during his lifetime regarding his sexual orientation. There is no doubt that computers are ubiquitously part of our lives due to the infusion of Turing’s contributions.

Cursor
James Dammann

If you have used a word processor today, moved your mouse on your laptop, dragged an object around on your smartphone, or highlighted a section of text on your tablet, you can thank Jim Dammann. In 1961 during his second year at IBM and just one year after completing his PhD, Jim created the concept of what today we all take for granted -- the cursor. This idea he documented in utilizing the cursor within word processing operations.

After retiring from IBM, Jim went on to inspire future generations of software engineers at Florida Atlantic University. His work there too demonstrated his creativity for he spent considerable effort enhancing their software engineering program by integrating ideas and feedback from local industries into the University curricular. Today, Jim lives in the Westlake Hills west of Austin Texas and spends most of his time in his art studio. He wrote and published The Opaque Decanter, a collection of poems about art, which provided a new view at part of art history.

@ symbol
Ray Tomlinson
Ray Tomlinson

Have you ever considered that someone, at some point, was in a position to choose what symbol would be used separate the user from their location in an email address? That person, it turns out, was Ray Tomlinson, and in 1971 he chose "@". Tomlinson is credited with demonstrating the first email sent between computers on a network, and when asked what inspired him to make this selection he said, “Mostly because it seemed like a neat idea.”

After completing his Master’s degree at MIT in 1965, Ray joined the Information Sciences Division of Bolt Beranek and Newman Inc. of Cambridge, Massachusetts. Since then he has made many notable contributions to the world of network computing. He was a co-developer of the TENEX computer system that was popular in the earliest days of the Internet; he developed the packet radio protocols used in the earliest internetworking experiments; he created the first implementation of TCP; and he was the principle designer of the first workstation attached to the Internet.

Gordon and SenseCam QUT
Gordon Bell
Gordon and SenseCam QUT

Gordon Bell is a pioneering computer designer with an influential career in industry, academia and government. He graduated from MIT with a degree in electrical engineering. From 1960, at Digital Equipment Corporation (DEC), he designed the first mini- and time-sharing computers and was responsible for DEC's VAX as Vice President of R&D, with a 6 year sabbatical at Carnegie Mellon University. In 1987, as NSF’s first, Ass't Director for Computing (CISE), he led the National Research Network panel that became the Internet. Bell maintains three interests: computing, lifelogging, and startup companies—advising over 100 companies. He is a Fellow of the, Association of Computing Machinery, Institute of Electrical and Electronic Engineers, and four academies. He received The 1991 National Medal of Technology. He is a founding trustee of the Computer History Museum, Mountain View, CA. and is an Researcher Emeritus at Microsoft. His 3 word descriptor: Computing my life; computing, my life.

RISC processor
John Hennessy
John Hennessy

Have you ever wondered how computers can execute complex commands in mere seconds? John Hennessy is a pioneer of reduced instruction set computing (RISC) architecture which employs small, highly-optimized sets of instructions to greatly enhance computer performance. He was instrumental in transferring the technology, specifically MIPS RISC architecture, to industry. He co-founded MIPS Technologies and co-authored the classic textbook with David A. Patterson, on Computer Architecture.

As Stanford faculty he rose to be the Chairman of the Computer Science Department, Dean of the School of Engineering, then Provost and finally the President of Stanford in 2000 (and till date). Hennessy holds a Master’s and Ph.D. in Computer Science from SUNY Stony Brook. He is an IEEE Fellow and was selected to receive the IEEE Medal of Honor in 2012. Hennessey also launched significant activities that helped to foster interdisciplinary research in the biosciences and bioengineering at Stanford.

Image credits