Study

Find a university

Search for accredited computing degree programs by selecting one or both of the criteria below. Learn more about each major below the search field.

1837 universities found.
More search options

Help us improve the university search! Take our less than one minute survey.

Get help choosing a major

Interested in majoring in computing, but not quite sure where to begin? In this section you will find overviews of traditional and specialty computing majors and the similarities and differences among them.

Click on each of the majors on the left to learn about possible career paths, what to expect during undergraduate studies, what skills are needed, and how to start preparing now.

Computer Engineering

Computer engineers analyze and develop computer systems, both hardware and software. They might work on system such as a flexible manufacturing system or a "smart" device or instrument. Computer engineers often find themselves focusing on problems or challenges which result in new "state of the art" products, which integrate computer capabilities. They work on the design, planning, development, testing, and even the supervision of manufacturing of computer hardware -- including everything from chips to device controllers.

They work on the interface between different pieces of hardware and strive to provide new capabilities to existing and new systems or products. The work of a computer engineer is grounded in the hardware -- from circuits to architecture -- but also focuses on software and how it interfaces with hardware. Computer engineers must understand logic design, microprocessor system design, computer architecture, computer interfacing, and continually focus on system requirements and design. It is primarily software engineers who focus on creating the software systems used by individuals and businesses, but computer engineers may also design and develop some software applications.

More (PDF, 323.16 KB)

Find Computer Engineering degrees in

Computer Science

Computer scientists impact society through their work in many areas. Because computer technology is embedded in so many products, services, and systems, computer scientists can be found in almost every industry. Design of next generation computer systems, computer networking, biomedical information systems, gaming systems, search engines, web browsers, and computerized package distribution systems are all examples of projects a computer scientist might work on. Computer scientists might also focus on improving software reliability, network security, information retrieval systems, or may even work as a consultant to a financial services company.

More (PDF, 328.53 KB)

Find Computer Science degrees in

Information Systems

Information systems (IS) professionals blend business and technology by transforming data into knowledge to keep their organizations on the cutting edge. IS professionals are responsible for defining, designing, implementing and maintaining an organization’s information systems, which may include a combination of information, processes, people, software and technology. These professionals may work in a wide range of industries from the government, to the military, to the private sector.

Additional responsibilities of the IS professional may include developing new business and multimedia solutions; configuring and integrating, e-learning, e-business, and database products; and managing the organization’s web presence. IS professionals may also have responsibility in modeling, designing, and configuring an organization’s databases. IS professionals may train others on topics such as how to use word processing software, databases spreadsheets, and information systems. At the management level, IS professionals may be engaged in resource management including resource planning, budgeting, and selecting database products or network components.

More (PDF, 241.61 KB)

Find Information Systems degrees in

Information Technology

In today’s information-driven world, organizations depend on Information Technology professionals to ensure they have the technology needed to achieve their goals and be successful. IT professionals are the “go-to people” when it comes to planning, installing, and maintaining an organization’s technological backbone. These professionals may take on many roles within an organization from working on the front line assisting customers with technological problems, to managing an entire company’s computer network. IT professionals may work in business, healthcare, education, or non-profit institutions.

Information Technology professionals ensure that the computer networks within an organization are in good working order, secure, and updated or replaced as needed. IT professionals may be responsible for developing and maintaining an organization’s website, intranet, e-commerce applications, databases, phone systems, e-learning platforms, and multimedia assets. IT professionals may take on the role of trainers to teach employees how to use software, databases, applications or systems. IT managers may be responsible for planning and overseeing large scale technology projects and the teams of people that support them. They may be also be tasked with managing and planning an organization’s technology budget and purchasing equipment, software, or technological products.

More (PDF, 349.59 KB)

Find Information Technology degrees in

Software Engineering

The explosive impact of computers and information technology on our everyday lives has generated a need to design and develop new computer software systems and to incorporate new technologies into a rapidly growing range of applications. The tasks performed by workers known as computer software engineers evolve quickly, reflecting new areas of specialization or changes in technology, as well as the preferences and practices of employers. Computer software engineers apply the principles and techniques of computer science, engineering, and mathematical analysis to the design, development, testing, and evaluation of the software and systems that enable computers to perform their many applications.

Software engineers working in applications or systems development analyze users' needs and design, construct, test, and maintain computer applications software or systems. Software engineers can be involved in the design and development of many types of software, including software for operating systems and network distribution, and compilers, which convert programs for execution on a computer. In programming, or coding, software engineers instruct a computer, line by line, how to perform a function. They also solve technical problems that arise. Software engineers must possess strong programming skills, but are more concerned with developing algorithms and analyzing and solving programming problems than with actually writing code.

More (PDF, 322.24 KB)

Find Software/Multimedia Engineering degrees in

Specialty Degrees

With new advances in technology being made every day, the realm of possibilities for specialization in computing is ever growing. Specialty computing degree areas extend beyond traditional computing majors, which include computer science, computer engineering, information systems, information technology, and software engineering. Specialty computing degrees may combine elements of traditional majors or intersect with non-computing disciplines such as medicine, criminal justice, or art. These degrees present a unique opportunity for a career that combines computing with other personal interests.

There are hundreds of different specialty computing degrees, a few of which will be discussed here. To explore the full spectrum of specialty computing degree areas, please visit TryComputing.org’s university search feature. Specialty computing degree areas can include programs such as bioinformatics, forensic computing, internet engineering, artificial intelligence, or gaming. There are boundless opportunities with regards to what can be done with a degree in a specialty computing area. For example, a forensic computing professional may be responsible for protecting an organization and its customers from cybercrime. A bioinformatics professional’s work may include mapping DNA or protein sequences. Game designers might be responsible for developing games for mobile devices or gaming consoles. Internet engineers might work on projects such as developing the next big e-business platform. Computing professionals working in artificial intelligence might design robots for use in the home, industrial settings, or even healthcare. As can be imagined, specialty computing degree holders can work in a wide array of settings including healthcare, criminal justice, education, or business to name just a few.

More (PDF, 235.92 KB)

Find Other Computing Fields degrees in
Turing machine
Alan Mathison Turing
Alan Mathison Turing

Did you know that computing has been used in military espionage and has even influenced the outcome of major wars? Alan Mathison Turing designed the code breaking machine that enabled the deciphering of German communications during WWII. As per the words of Winston Churchill, this would remain the single largest contribution to victory. In addition, he laid the groundwork for visionary fields such as automatic computing engines, artificial intelligence and morphogenesis. Despite his influential work in the field of computing, Turing experienced extreme prejudice during his lifetime regarding his sexual orientation. There is no doubt that computers are ubiquitously part of our lives due to the infusion of Turing’s contributions.

Liz Gerber - Image credit Lisa Beth Anderson
Liz Gerber
Liz Gerber - Image credit Lisa Beth Anderson

Liz Gerber earned her MS and PhD in Product Design and Management Science and Engineering at Stanford. She specializes in design and human-computer interaction, particularly how social computing supports the innovation process. Her current research investigates crowd-funding as a mechanism for reducing disparities in entrepreneurship.
Gerber's work funded by the US National Science Foundation and the National Collegiate Inventors and Innovators Alliance has appeared in peer-reviewed journals, including Transactions on Computer Human Interactions, Design Studies, and Organization Science.
As an award-winning teacher and researcher, Liz has touched the lives of more than 6,000 students through her teaching at Northwestern's Segal Design Institute and Stanford University's Hasso Plattner's Institute of Design and through her paradigm-shifting creation, Design for America, a national network of students using design to tackle social challenges.

Image credit - Lisa Beth Anderson

First computer mouse
Douglas Engelbart
Douglas Engelbart

In 1967, Douglas Engelbart applied for a patent for an "X-Y position indicator for a display system," which he and his team developed at the Stanford Research Institute (SRI) in Menlo Park, California. The device, a small, wooden box with two metal wheels, was nicknamed a "mouse" because a cable trailing out of the one end resembled a tail.

In addition to the first computer mouse, Engelbart’s team developed computer interface concepts that led to the GUI interface, and were integral to the development of ARPANET--the precursor to today’s Internet. Engelbart received his bachelor’s degree in electrical engineering from Oregon State University in 1948, followed by an MS in 1953 and a Ph.D. in 1955 both from the University of California, Berkeley.

@ symbol
Ray Tomlinson
Ray Tomlinson

Have you ever considered that someone, at some point, was in a position to choose what symbol would be used separate the user from their location in an email address? That person, it turns out, was Ray Tomlinson, and in 1971 he chose "@". Tomlinson is credited with demonstrating the first email sent between computers on a network, and when asked what inspired him to make this selection he said, “Mostly because it seemed like a neat idea.”

After completing his Master’s degree at MIT in 1965, Ray joined the Information Sciences Division of Bolt Beranek and Newman Inc. of Cambridge, Massachusetts. Since then he has made many notable contributions to the world of network computing. He was a co-developer of the TENEX computer system that was popular in the earliest days of the Internet; he developed the packet radio protocols used in the earliest internetworking experiments; he created the first implementation of TCP; and he was the principle designer of the first workstation attached to the Internet.

MATLAB graph
Cleve Moler

Cleve Moler improved the quality and accessibility of mathematical software and created a highly respected software system called MATLAB. He was a professor of mathematics and computer science for almost 20 years at the University of Michigan, Stanford University, and the University of New Mexico. In the late 1970’s to early 1980’s he developed several mathematical software packages to support computational science and engineering. These packages eventually formed the basis of MATLAB, a programming environment for algorithm development, data analysis, visualization, and numerical computation. MATLAB can be used to solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran. Today, Professor Moler spends his time writing books, articles, and MATLAB programs.

Listen to what Professor Moler has to say about his life’s work: http://www.youtube.com/watch?v=IT5umwNSAxE

Image credits